Synthese und Reaktionen von 2-Pyridylphosphan, 2-C₅NH₄-PH₂

Gerd U. Spiegel und Othmar Stelzer*

Fachbereich 9, Anorganische Chemie, Bergische Universität-Gesamthochschule Wuppertal, Gaußstraße 20, D-5600 Wuppertal 1

Eingegangen am 23. November 1989

Key Words: Phosphane, 2-pyridyl-

Synthesis and Reactions of 2-Pyridylphosphane, 2-C₅NH₄-PH₂

By reduction of diethyl 2-pyridylphosphonate (1) with LiAlH₄ 2-pyridylphosphane (2) is accessible in $\approx 80\%$ yield. H/D exchange experiments and acid/base exchange reactions between 2 and PhPHLi or Ph₂PLi show 2 to be a stronger PH acid than PhPH₂ and Ph₂PH. Silylation of the lithium phosphides 2-C₅NH₄-PRLi (R = H, SiMe₃) with Me₃SiCl affords the corresponding silyl derivatives 2-C₅NH₄ - PRSiMe₃ (3, 4). Partial anionic alkylation of 2 with CH₃I or CH₂Cl₂ yields the mono- or bidentate secondary phosphanes 2-C₅NH₄-PHMe

Phosphorverbindungen mit O-, N- und S-heterocyclischen Substituenten A-F sind als Hybridliganden mit definiertem Abstand der Donoratome P, O, N, S in der Lage, Übergangsmetalle in engem Abstand zu binden und die Bildung zweikerniger Metall-Metall-gebundener Komplexe zu induzieren.

Dies wurde eingehend am Beispiel der 2-Pyridylphosphane A aufgezeigt, die sowohl als einzähnige (P) als auch zweizähnige (P, N) Liganden fungieren, und als Brückenliganden den Aufbau homo-⁷⁻⁹⁾ und heteronuclearer Zweikernkomplexe¹⁰⁾ ermöglichen.

Primäre und sekundäre Phosphane mit heterocyclischen Substituenten sind unseres Wissens bisher unbekannt. Die bifunktionelle Donorkapazität und die Reaktivität der P-H-Bindungen machen sie zu interessanten Synthonen für den Aufbau neuer P-Heterocyclen und mehrzähniger Übergangsmetallverbindungen bzw. Cluster. 2-Pyridylphosphan, 2-C₅NH₄-PH₂, war in diesem Zusammenhang von besonderem Interesse.

Synthese und Säure-Base-Charakter von 2-Pyridylphosphan (2)

Für die Synthese von 2 bietet sich Diethyl-2-pyridylphosphonat (1) als gut zugängliche Ausgangsverbindung an, (6) and $2-C_5NH_4-PHCH_2PH-2-C_5H_4N$ (5), respectively. On treatment of 2 with CH_3I or HCl the pyridinium salts $[(2-C_5NH_4R)PH_2]^+X^-$ (R = H, Me; X = Cl, I) are formed. However, coordination of 2 to transition metals in low oxidation states occurs by the phosphorus atom. Addition of the PH bonds in 2 to the activated C=C double bonds in acrylic acid esters, mesityl oxide, cinnamnic acid esters, and dimethyl vinylphosphonate leads to chiral P,N hybrid ligands with functional groups in the alkyl side chain.

die nach Redmore¹¹⁾ aus Pyridin-*N*-oxid und Natriumdiethylphosphonat entsprechend Gl. (1) dargestellt werden kann. Reduktion von 1 mit LiAlH₄ liefert 2 in ca. 80proz. Ausbeute (Gl. 2). Die Darstellung von 2 durch Umsetzung von 2-Pyridylhalogeniden 2-C₅NH₄X (X = Cl, Br) mit PH₃ im System DMSO/H₂O/KOH^{12,13)} gelingt nicht (Gl. 3).

Die chemische Verschiebung δP von 2 unterscheidet sich von der von PhPH₂ ($\delta P = 122.0 - 123.8$)^{14a)} nur wenig. Im Vergleich zu Pyridin¹⁵⁾ sind die δC -Werte von 2 wenig verändert (Tab. 1). Die dort gefundene Reihenfolge der chemischen Verschiebungen δC -2, δC -6 > δC -4 > δC -3, δC -5 bleibt ungeachtet des Einflusses der α -ständigen PH₂-Gruppe in 2 erhalten.

2-Pyridylphosphan (2) besitzt eine deutlich größere PH-Acidität als PhPH₂ ($pK_a = 24.5$)^{14b)}. Wird die äquimolare Lösung von Phenylphosphan und 2-Pyridylphosphan in Diethylether mit einem Äquivalent Methyllithium versetzt, so bildet sich ausschließlich das Lithiumderivat von 2; Ph-PHLi läßt sich ³¹P{¹H}-NMR-spektroskopisch in der Lösung nicht nachweisen. Erwartungsgemäß wird 2-C₅NH₄-PH₂ von PhPHLi praktisch vollständig unter Bildung von 2-C₅NH₄-PHLi (**2a**) deprotoniert (Gl. 4). Entsprechendes

	C-2	C-3	C-4	C-5	C-6 ^{d)}	C-7	C-8 ^{d)}	
1	152.6 (225)	127.8 (25)	136.1 (12)	125.9 (14)	150.3 (23)	62.4 ^{e)} (6)	16.0 ^{e)} (6)	
2 ^{b)}	157.7 (6)	128.9 (15)	135.3 (3)	122	150.2 (10)			
3 ^{b)}	162.9 (2)	128.4 (1)	134.8 (3)	120.4	150.0 (11)	0.3^{0} (10)		
4 ^{b)}	163.0 (14)	127.8 (13)	136.5	121.9	150.2 (9)	$0.3^{(0)}(9.9)$		
5 ^{c)}	159.6 (8; 2)	128.0 (11)	135.5 (2)	121.0	151.0 (10)	15.6 (26)		
6°)	163.0 (6)	127.8 (13)	136.5 (3)	121.9	150.2 (9)	14 (12)		
9°)	154.3 (21)	136.5 (11)	144.9 (3)	128.8	142.0	. ,		
10 ^{c)}	153.1 (30)	132.8 (10)	143.7 (4)	125.0	141.9			
11 ^{c)}	156.1 (49)	129.8 (7)	137.8 (7)	124.7	152.1 (14)		196.8 ^{g)}	
12 ^{c)}	153.0 (66)	128.0 (21)	136.6 (7)	124.4	151.0 (17)		205.0^{g} (9)	209.6 (15)
13 ^{c)}	154.5 (48)	127.4 (22)	136.0 (7)	124.1	150.4 (17)		195.2^{g} (7)	198.6 (3)
14 ^{c)}	153.1 (60)	127.9 (2)	135.6 (3)	123.2	150.1 (4)		$\frac{207.5^{\text{h}}}{6.8}$	$\frac{213.0(5;3)}{C0^{3}}$
15 ⁱ⁾	158.9 (4)	127.9 (13)	132.9 (2)	119.9 (15)	147.6	50.9 (10)	$\frac{C-8}{29.3(13)}$	$\frac{C-9}{204.9}$
16 ^{k)}	159.1 (1)	125.8 (18)	132.9 (3)	119.6	147.9 (8)	30.8 (6)	13.9 (13)	170.7 (7)
17 ^{k,m)}	$154.2^{(1)}$	126.1 (11)	135.2 (2)	124.7	149.1	31.9 (8)	17.2 (10)	173.4 (8)
	152.2 (1)	125.8 (12)	135.1 (3)	124.6	148.7		. ,	173.3 (10)
18 ^{k)}	$159.9^{1}(2)$	n)	n)	121.7	149.6 (6)	36.7 (13)	38.8 (7)	171.1 (4)
	159.6 (4)	n)	n)	121.7	149.4 (7)	36.3 (16)	37.8 (23)	171.1 (5)
19 ^{k)}	160.0 (1)	126.6 (5)	133.9 (3)	120.7	149.1 (8)	12.8 (5; 7)°)	22.9 (138; 6) ^{p)}	~ /
20 ^{c)}	166.3 (8)	128.3 (12)	135.2 (6)	122.0	150.3 (6)	25.9 (15; 3) ^{q)}	32.8 (16; 3) ^{r)}	

Tab. 1. ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten von 1-6, 9-20^{a)}

^{a)} δ -Werte rel. zu internem TMS; Kopplungskonstanten [Hz] in Klammern. – ^{b)} Lösungsmittel C₆D₆. – ^{c)} Lösungsmittel CD₂Cl₂. – ^{d)} Indizierung der C-Atome des Py-Rings siehe 1, Indizierung der Atome C-7 bis C-9 siehe Gl. (16). – ^{e)} OEt. – ^{f)} Me₃Si. – ^{g)} CO-Gruppen CO_{ax}, CO_{eq}. – ^{h)} CO_{eq}: XAB (X = ¹³C; A, B = ³¹P); CO_{ax}: A₂X. – ⁱ⁾ COMe: 29.6 (2); α -CH₃, diastereotop, 25.2 (15), 25.0 (17); Lösungsmittel CDCl₃. – ^{k)} OMe: 49.2 (16); 50.3 (17); 50.9 (18); P(O)(OMe): 50.7 (7) (19); Lösungsmittel CDCl₃. – ^{b)} Diastereomere. – ^{m)} β -CH₃, 10.1 (8). – ⁿ⁾ Signale infolge Linienkoinzidenz nicht zuzuordnen. – ^{o) 1}J[P(H),C] = 5, ²J[P(O),C] = 7 Hz. – ^{p) 1}J[P(O),C] = 138, ²J[P(H),C] = 6 Hz. – ^{q) 1}J[P(H),C] = 15, ²J[P(H₂),C] = 3 Hz. – ^{n) 1}J[P(H₂),C] = 16, ²J[P(H),C] = 3 Hz.

gilt für Ph_2PLi (Gl. 5). 2 erweist sich somit als eine stärkere PH-Säure als $PhPH_2$ und Ph_2PH .

Tab. 2. ${}^{31}P{}^{1}H{}-NMR-Daten der Verbindungen 1-20^{a}$

	δP	¹J(PH)		δΡ	¹ <i>J</i> (PH)		δΡ	ⁱ J(PH)
1 ^{b)}	9.8		5 ^{d)}	- 50.9 [†]	223	13 ^{e)}	- 89.9	343
2 ^{b)}	-121.4	203		- 54.8		14 ^{c)}	- 56.0	330
2a ^{c)}	-96.6	195	6 ^{d)}	70.7	206	15 ^{c)}	9.0	215
2 b ^{c)}	-124.3	204	7 ^{d)}	9.2	505	16 ^{c)}	- 49.6	210
		32 ^{g)}	8°)	20. 6		17 ^{c)}	-57.1 ⁰	211
2c ^{c)}	-127.0	32 ^{g)}	9 °)	-130.2	218		- 58.3	210
3 ^{c)}	-118.6	194	10 ^{e)}	-132.4	219	18 ^{c)}	-23.3 ⁰	214
3a°)	-112.7		11 ^{e)}	-71.1	313		-25.2	21 0
4 ^{c)}	-125.1		12 ^{c)}	83.1	339	19 ^{c)}	-45.7	211
							+ 31.9	
						20 ^{b)}	-46.8	209
							-128.8	1 9 0

^{a)} Chemische Verschiebungen rel. zu 85proz. H_3PO_4 ext., Kopplungskonstanten in Hz. – ^{b)} Reinsubstanz. – ^{c)} tert-Butylmethylether. – ^{d)} DMF. – ^{e)} CH₂Cl₂. – ^{f)} Diastereomere. – ^{g)} J(PD).

Die H-Atome in 2 werden in CD₃OD rasch gegen Deuterium ausgetauscht. Neben $2-C_5NH_4 - PHD$ (2b) bildet sich $2-C_5NH_4 - PD_2$ (2c), die beide ³¹P-NMR-spektroskopisch charakterisiert wurden. Für 2b wurde ein Dublett von 1:1:1-Tripletts beobachtet [¹J(PH) = 204, ¹J(PD) = 32 Hz], während 2c ein 1:2:3:2:1-Quintett aufweist [¹J(PD) = 32 Hz] (Tab. 2).

Die Umsetzung des Li-Derivats 2a mit Me₃SiCl liefert die Silylverbindung 3 in 87proz. Ausbeute als farblose Flüssigkeit. Deprotonierung von 3 mit MeLi und anschließende Umsetzung des dabei gebildeten Phosphids 3a mit Me₃SiCl macht 4, das Bis(trimethylsilyl)-Derivat von 2, zugänglich (Gl. 6-8).

Durch partielle Alkylierung mit CH_2CI_2 im System DMSO/H₂O/KOH bzw. DMF/H₂O/KOH¹² läßt sich **2** in das disekundäre Methylenbisphosphan **5** überführen, das als neuartiger Hybridligand mit der Donorsequenz N-C-P-C-P-C-N für die Synthese mehrkerniger Komplexe von Interesse ist.

Neben 5 fällt Methyl-2-pyridylphosphan (6) an, das in 30proz. Ausbeute isoliert werden kann. Die wäßrige Phase enthält das Kaliumsalz der 2-Pyridylphosphonigsäure (7)¹¹, das ³¹P-NMR-spektroskopisch identifiziert wurde ($\delta P = +9.2$).

2-Pyridylphosphan verhält sich bei der Umsetzung nach Gl. (9) weitgehend analog zu Phenylphosphan, das unter diesen Bedingungen neben Methylphenylphosphan und Phenylphosphonigsäure, PhP(O)(OH)H, das 5 entsprechende Methylenbisphenylphosphan, PhHP-CH₂-PPhH, liefert^{12a}. Methyl-2-pyridylphosphan (6) wird auch durch Methylierung von 2a mit Methyliodid erhalten (Gl. 10). Die Umsetzung von 2 mit Methyliodid führt zu einem Gemisch der Verbindungen 6, 8 und 9 (Gl. 11).

9 zeigt, wie das HCl-Addukt 10, das entsprechend Gl. (12) durch HCl-Anlagerung an 2 zugänglich ist, im ³¹P-NMR-Spektrum ein Triplett [¹J(PH) = 219 (9), 218 Hz (10)] mit einem δ P-Wert, der sich von dem von 2 nur wenig unterscheidet (Tab. 2).

Die Quartärisierung bzw. Protonierung des Pyridinstickstoffatoms in 9 bzw. 10 ist mit einer signifikanten Hochfeldverschiebung des ¹³C{¹H}-NMR-Signals von C-6 im Pyridinring verknüpft [δ C-6 150.2 (2), 142.0 (9), 141.9 (10)]. Analoge Befunde liegen für *P*,*N*-koordinierte Komplexe der Phosphanliganden HRP-[CH₂]_n-(2-C₅NH₄) vor^{15a}. Diese Ergebnisse belegen für 9 und 10 die Struktur von Pyridiniumsalzen mit freien PH₂-Gruppierungen.

Mit Ni(CO)₄, M(CO)₅(Py) (M = Mo, W)¹⁶⁾ und Mo(CO)₄-(C₇H₈)¹⁷⁾ reagiert 2 unter Bildung der Komplexe 11–14 (Gl. 13–15).

Die Koordination von 2 erfolgt in allen Fällen über die PH₂-Donorgruppe, wie die Tieffeldverschiebung der δP -NMR-Signale im ³¹P{¹H}-NMR-Spektrum und die ¹³C-³¹P-Aufspaltung der CO-Resonanzen in den ¹³C{¹H}-NMR-Spektren zeigen. 2-Pyridylphosphan (2) ist in seinen elektronischen Ligandeneigenschaften, gemessen an dem Wert von v(CO)A₁ im IR-Spektrum von 11, dem PhPH₂ vergleichbar¹⁸.

Addition von 2 an ungesättigte Verbindungen

2-Pyridylphosphan (2) verfügt, wie PhPH₂, über reaktive PH-Bindungen und sollte sich an C=C-Doppelbindungen addieren lassen. Dies konnte am Beispiel der Umsetzung von 2 mit Mesityloxid, Acrylsäure-methylester, 2-Methylacrylsäure-methylester, Zimtsäure-methylester und Vinylphosphonsäure-dimethylester gezeigt werden (Gl. 16). Man erhält auf diese Weise chirale P,N-Hybridliganden mit funktionellen Gruppen in den Seitenketten.

Als Katalysator für diese Michael-Additionsreaktionen wurde Kalium-*tert*-butylat eingesetzt. Unter verschärften Bedingungen und Basenkatalyse lassen sich die Additionsprodukte **15–19** in die Ausgangsprodukte zurückspalten, wie am Beispiel von **18** gezeigt werden konnte. **17** und **18** enthalten in β - bzw. α -Position zum chiralen P-Atom ein asymmetrisch substituiertes C-Atom und fallen daher jeweils als Gemisch von zwei Isomeren an, die sich im ³¹P{¹H}-NMR-Spektrum durch nahe beieinanderliegende Signale zu erkennen geben (Tab. 1). Die Methylgruppen am α -C in **15** sind, bedingt durch die Nachbarschaft des chiralen P-Atoms, chemisch nicht äquivalent (Tab. 1).

Durch Reduktion mit LiAlH₄ läßt sich 19 in das sekundär-primäre Phosphan 20 mit 2-Pyridylsubstituenten überführen (Gl. 17).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die finanzielle Unterstützung. Der BASF AG, Bayer AG und Hoechst AG danken wir für die zahlreichen Chemikalienspenden.

Experimenteller Teil

Arbeitsmethoden und Geräte siehe Lit.¹²⁸⁾. Die Verbindungen 1¹¹⁾, $M(CO)_5(Py)^{16)}$ und $Mo(CO)_4(C_7H_8)^{17)}$ wurden nach Literaturvorschriften dargestellt.

Darstellung von 2-Pyridylphosphan (2): Die Suspension von 78.0 g (2.0 mol) LiAlH₄ in 1.2 l Diethylether wurde im Verlauf von 5 h mit 215.0 g (1.0 mol) 2-Pyridylphosphonsäure-diethylester (1) versetzt und anschließend 16 h bei Raumtemp. gerührt. Danach wurden zur Hydrolyse von überschüssigem LiAlH₄ 360 ml Wasser zugetropft. Der Niederschlag wurde über Glaswolle abfiltriert und dreimal mit je 150 ml Diethylether extrahiert. Der Ether-Extrakt wurde mit Na₂SO₄ getrocknet, das Lösungsmittel bei Normaldruck entfernt und das verbleibende Phosphan 2 i. Vak. destilliert (Sdp. 35°C/0.01 mbar); Ausb. 88.6 g (80%).

> C₅H₆NP (111.1) Ber. C 54.05 H 5.40 N 12.60 Gef. C 54.66 H 5.88 N 12.59

Darstellung der Trimethylsilylderivate von 2: Eine Lösung von 2-Pyridylphosphan (2) (2.2 g; 20 mmol) bzw. 2-Pyridyl(trimethylsilyl)phosphan (3) (3.7 g; 20 mmol) in 50 ml tert-Butylmethylether wurde bei 0°C innerhalb von 15 min jeweils mit 11.2 ml (20 mmol) einer 5proz. etherischen Lösung von MeLi versetzt. Die Reaktionsmischungen wurden ca. 30 min nachgerührt, und die Vollständigkeit der Metallierung von 2 bzw. 3 zu 2a ($\delta P = -96.6$) bzw. 3a ($\delta P = -112.7$) wurde ³¹P-NMR-spektroskopisch überprüft. Anschließend wurden je 2.16 g (20 mmol) Chlortrimethylsilan bei 0°C zu den Reaktionsmischungen gctropft. Von abgeschiedenem LiCl wurde abfiltriert und das Lösungsmittel bei 30°C/0.01 mbar abdestilliert. Die fraktionierende Destillation der verbleibenden Rückstände lieferte 3 (Sdp. 49°C/0.03 mbar) bzw. 4 (Sdp. 58°C/ 0.03 mbar). Ausb. 3.2 g (87%) 3 bzw. 2.3 g (90%) 4.

C ₈ H ₁₄ NPSi (3) (183.1)	Ber. C 52.48 H 7.65
	Gef. C 51.92 H 8.07
$C_{11}H_{22}NPSi_2$ (4) (255.3)	Ber. C 51.75 H 8.62
	Gef. C 51.89 H 8.60

Umsetzung von 2 mit CH_2Cl_2 : Die Lösung von 11.1 g (100 mmol) 2 in 100 ml DMSO wurde mit 4.3 g (50 mmol) CH_2Cl_2 und anschließend mit 18 ml einer 56proz. wäßrigen KOH-Lösung versetzt. Nach 3stdg. Rühren bei Raumtemp. wurden 20 ml H₂O zugegeben, und dreimal wurde mit je 80 ml *n*-Pentan extrahiert. Nach Trocknen der organischen Extrakte mit Na₂SO₄ wurde das Lösungsmittel zusammen mit 6 bei Raumtemp. im Druckbereich von 1013-0.08 mbar abdestilliert. 5 verblieb als farbloses viskoses Öl, das ³¹P{¹H}und ¹³C{¹H}-NMR-spektroskopisch identifiziert wurde. Beim Versuch, 5 durch fraktionierende Destillation in analytisch reiner Form zu gewinnen, trat Zersetzung ein. Ausb. 3.4 g (29%). Das neben 5 gebildete Phosphan 6 wurde ³¹P{¹H}-NMR-spektroskopisch charakterisiert. Ausb. 3.7 g (30%).

Darstellung von 6: Eine Lösung von 2.2 g (20 mmol) 2 in 50 ml tert-Butylmethylether wurde bei 0 °C mit 11.2 ml (20 mmol) etherischer Methyllithiumlösung versetzt. Nach Abklingen der Reaktion wurden innerhalb von 20 min bei 0 °C 2.84 g (20 mmol) Iodmethan zugegeben, und 4 h wurde bei Raumtemp. gerührt. Nach Abfiltrieren von abgeschiedenem LiI wurde das Lösungsmittel unter Normaldruck abdestilliert und der Rückstand i. Vak. fraktionierend destilliert. Sdp. 38 °C/0.01 mbar; Ausb. 2.2 g (88%).

C₆H₈NP (125.1) Ber. C 57.62 H 6.40 Gef. C 57.94 H 6.78

Umsetzung von 2 mit CH_3I : Eine Lösung von 1.1 g (10 mmol) 2 in 40 ml Petrolether (40-60°C) wurde bei 0°C im Verlauf von 30 min mit 1.42 g (10 mmol) MeI versetzt. Nach kurzem Rühren fiel 9 als blaßgelber Niederschlag aus. Die ³¹P{¹H}-NMR-spektroskopische Untersuchung der Reaktionslösung zeigte daß neben 9 die Phosphane 6 und 8 gebildet wurden. Ausb. 1.32 g (53%) 9.

> C₆H₉INP (9) (253.0) Ber. C 28.49 H 3.56 N 5.53 Gef. C 28.24 H 3.79 N 5.56

Darstellung von 10: Zu einer Lösung von 1.1 g (10 mmol) 2 in 30 ml Petrolether (40-60 °C) wurden bei 0 °C innerhalb von 5 min 2 ml (10 mmol) einer 5 m Lösung von HCl in Diethylether gegeben. Man ließ 15 min bei Raumtemp. rühren und filtrierte das ausgefallene HCl-Addukt 10 ab. Ausb. 1.42 g (96%).

C₅H₇ClNP (147.5) Ber. C 40.7 H 4.7 Gef. C 40.2 H 4.9

Darstellung von 11-14: Eine Lösung von 3.96 g (23 mmol) Ni(CO)₄ in 50 ml Petrolether (40-60 °C) wurde bei 0 °C im Verlauf von 30 min mit 0.50 g (4.5 mmol) **2** versetzt. Nach Abklingen der Gasentwicklung wurde 5 h bei Raumtemp. gerührt, und anschlie-Bend wurden die flüchtigen Anteile i. Vak. (20 °C/0.01 mbar) abdestilliert. Der Rückstand wurde mit 30 ml Petrolether (40-60 °C) versetzt und die Lösung auf -78 °C abgekühlt. Dabei fiel 11 in Form eines gelben Niederschlags an und wurde IR-, ³¹P{¹H}- und ¹³C{¹H}-NMR-spektroskopisch identifiziert (Tab. 1, 2).

Die Lösungen von Pentacarbonyl(pyridin)molybdän(0) bzw. -wolfram(0) bzw. (Bicyclo[2.2.1]hepta-2,5-dien)tetracarbonylmolybdän(0) in 50 ml Petrolether (40-60 °C) wurden mit den in Tab. 3 angegebenen Mengen 2 bei 0 °C innerhalb 15 min versetzt. Nach 4stdg. Rühren bei Raumtemp. wurden die Reaktionslösungen auf -78 °C abgekühlt. 12 bzw. 13 fielen dabei als farbloser Niederschlag an, 14 schied sich als rotbraunes Öl ab. Ansätze, Ausbeuten und analytische Daten siehe Tab. 3. – IR, v(CO) (cm⁻¹), CH₂Cl₂; 11: $\tilde{v} = 2079, 2003;$ 12: 2075, 1995, 1920; 13: 2085, 1975, 1890; 14: 2023, 1955, 1920.

Tab. 3. Darstellung von 12-19: Ansätze, Ausbeuten und analytische Daten

(r	g 2 nmol)	g (mmol)	Ausb. g (%)	Summenformel (Molmasse)	Analyse Ber. Gef. C	н	N
12	1.1 (10)	3.0 (10) (CO) ₅ MoPy	3.18 (91.6)	C ₁₀ H ₆ MoNO ₅ P (347.0)	34.58 35.19	1.73 2.06	
13	1.1 (10)	3.8 (10) (СО) ₅ WРу	3.95 (90.8)	с ₁₀ н ₆ no ₅ wp (435.0)	27.59 27.77	1.38 1.42	
14	1.1 (10)	1.5 (5) C ₇ H ₈ Mo(CO) ₄	3.69 ((85.8)	^C 14 ^H 12 ^{MoN} 2 ^O 4 ^P 2 (430.0)	39.07 37.68	2.79 3.21	
15	2.2 (20)	1.9 (20) Mesityloxid	3.96 (94.7)	C ₁₁ H ₁₆ NOP (209.1)	63.18 62.38	7.65 7.64	6.70 6.43
16	5.5 (50)	4.5 (50) Acrylsäure- methylester	9.63 (97.8)	^C 9 ^H 12 ^{NO} 2 ^P (197.1)	54.84 54.12	6.09 6.08	7.10 6.96
17	5.5 (50)	6.2 (55) 2-Methyl- acrylsäure-	10.4 (89.7)	C ₁₀ H ₁₄ NO ₂ P (211.1)	56.89 57.20	6.63 6.83	6.63 6.41
18	5.5 (50)	8.1 (50) Zimtsäure- methylester	11.98 (86.6)	^C 15 ^H 16 ^{NO} 2 ^P (273.2)	65.95 65.66	5.86 6.02	
19	11.0 (100	13.3 (100))Vinyl- phosphonsäu: dimethylest	22.9 (92.7) re- er	C ₉ H ₁₅ NO ₃ P ₂ (247.1)	43.75 42.98	6.07 6.21	5.67 5. 7 0

Darstellung von 15-19: Die Lösungen von 2 in 30 bzw. 100 ml tert-Butylalkohol wurden jeweils mit den äquivalenten Mengen der in Tab. 3 aufgeführten ungesättigten Verbindungen versetzt. Nach Zugabe von 100-180 mg KOtBu kam die Reaktion in Gang und war nach ca. 1 h vollständig abgelaufen. Anschließend wurde das Lösungsmittel i. Vak. (25°C/1 mbar) entfernt und der Rückstand i. Vak. fraktionierend destilliert. Ansätze, Ausbeuten, Siedepunkte und analytische Werte siehe Tab. 3.

Reduktion von 19: Eine Lösung von 18.5 g (0.075 mol) 19 in 20 ml tert-Butylmethylether wurde bei 0 C innerhalb von 30 min in eine Suspension von 57 g (0.150 mol) LiAlH₄ in 200 ml tert-Butylmethylether getropft. Anschließend wurde das Reaktionsgemisch 16 h bei 25°C gerührt. Nach Zugabe von 13 ml Wasser wurde die organische Phase abgetrennt und der Rückstand [LiOH, Al(OH)₃] mehrmals mit je 20 ml tert-Butylmethylether extrahiert. Die organische Phase wurde mit Na₂SO₄ getrocknet und im Druckbereich 1013-0.04 mbar fraktionierend destilliert. Ausb. 7.3 g (57%), Sdp. 78°C/0.04 mbar.

C₇H₁₁NP₂ (171.1) Ber. C 49.14 H 6.43 Gef. C 49.51 H 6.90

CAS-Registry-Nummern

- 1: 23081-78-9 / 2: 125995-76-8 / 2a: 125995-89-3 / 3: 125995-77-9 / 3a: 125995-90-6 / 4: 125995-78-0 / 5: 125995-79-1 / 6: 125995-80-4 / 7: 125995-81-5 / 8: 83865-26-3 / 9: 125995-82-6 / 10: 125995-83-7 / 11: 125995-94-0 / 12: 125995-95-1 / 13: 125995-96-2 / 14: 125995-97-3 / 15: 125995-84-8 / 16: 125995-85-9 / 17 (Isomer 1): 125995-86-0 / 17 (Isomer 2): 125995-92-8 / 18 (Isomer 1): 125995-87-1 / 18 (Isomer 2): 125995-93-9 / 19: 125995-88-2 / 20: 125995-91-7 / Ni(CO)₄: 13463-39-3 / Mo(CO)₅Py: 14324-76-6 / W(CO)₅Py: 14586-49-3 / Mo(CO)₄(C₇H₈): 12146-37-1 / Mesityloxid: 141-79-7 / Acrylsäure-methylester: 96-33-3 / 2-Methylacrylsäure-methylester: 80-62-6 / Zimtsäure-methylester: 19713-73-6 / Vinylphosphonsäure-dimethylester: 4645-32-3
- ¹⁾ H. G. Ang, W. E. Kow, K. F. Mok, Inorg. Nucl. Chem. Lett. 8 (1972) 829; H. Schmidbaur, Y. Inoguchi, Z. Naturforsch., Teil B, 35 (1980) 1329.
- ²⁾ F. E. Wood, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 105 (1983) 6332.
- ³⁾ J. M. Brown, L. R. Canning, J. Chem. Soc., Chem. Commun. 1983, 460.

- ⁴⁾ C. E. Griffin, R. P. Peller, J. A. Peters, J. Org. Chem. 30 (1965) 91.
- ⁵⁾ E. A. Krasilnikova, E. S. Sharafieva, A. I. Razumov, Zh. Obshch. Khim. 52 (1982) 2638 [Chem. Abstr. 98 (1983) 72281]; E. A. Krasilnikova, E. S. Sharafieva, A. I. Razumov, N. Yu. Zasonova, Zh. Obshch. Khim. 52 (1982) 2793 [Chem. Abstr. 98 (1983) 89518].
- ⁶⁾ S. S. Moore, G. M. Whitesides, J. Org. Chem. 47 (1982) 1489
- ⁷⁾ J. P. Farr, M. M. Olmstead, A. L. Balch, J. Am. Chem. Soc. 102 (1980) 6654. 8)
- Y. Inoguchi, B. Milewski-Mahrla, H. Schmidbaur, Chem. Ber. 115 (1982) 3085.
- ⁹⁾ N. Lugan, G. Lavigne, J. J. Bonnet, Inorg. Chem. 25 (1986) 7.
- ¹⁰⁾ A. Maisonnet, J. P. Farr, M. M. Olmsted, C. T. Hunt, A. L. Balch, Inorg. Chem. 21 (1982) 3961
- ¹¹⁾ D. Redmore, J. Org. Chem. 35 (1970) 4114; A. R. Katritzky, E. Lunt, Tetrahedron 25 (1969) 4291. ¹²⁾ ¹²⁰ K. P. Langhans, O. Stelzer, Chem. Ber. 120 (1987) 1707. –
- ^{12b)} E. N. Tsvetkov, N. A. Bondarenko, I. G. Malokhova, M. I. Kabachnik, Synthesis 1986, 198.
- ¹³⁾ Hoechst AG (O. Stelzer, K. P. Langhans, J. Svara, N. Weferling, Inv.) (Eur. Pat. Appl. EP, 307, 702 (22.3.1989) [Chem. Abstr. 111
- (1989) 97500 j].
 ¹⁴) ¹⁴ai L. Maier in Organic Phosphorus Compounds (G. M. Kosolapoff, L. Maier, Hrsg.) Bd. 1, S. 1, Wiley Interscience, New York, London, Sydney, Toronto 1972. ¹⁴⁶ K. Issleib, R. Kümmel, Longon State, 21 (2005) 94 Organomet. Chem. 3 (1965) 84.
- J. Organomet. Chem. 5 (1903) 64.
 ¹⁵ ¹⁵ai H. O. Kalinowski, S. Berger, S. Braun, ¹³C-NMR-Spektroskopie, S. 362, Georg Thieme Verlag, Stuttgart, New York 1984. ^{15b} G. U. Spiegel, O. Stelzer, Z. Naturforsch., Teil B, 42 (1987) 579.
- ¹⁶⁾ W. Strohmeier, K. Gerlach, Chem. Ber. 93 (1960) 2087; H. D. Murdoch, H. Renzi, J. Organomet. Chem. 5 (1966) 463. ¹⁷⁾ ^{17a} R. Pettit, J. Am. Chem. Soc. 81 (1959) 1266. – ^{17b} M. A.
- Bennett, L. Pratt, G. Wilkinson, J. Chem. Soc. 1961, 2037.
- ¹⁸⁾ C. A. Tolman, J. Am. Chem. Soc. 92 (1970) 2953; C. A. Tolman, Chem. Rev. 77 (1977) 313; C. A. Tolman, Comprehensive Coordination Chemistry (G. Wilkinson, Hrsg.), Bd. 2, S. 1015, Pergamon Press, Oxford 1987.

[379/89]